X-Ray Data Booklet

Section 5.3 ELECTROMAGNETIC RELATIONS

	Gaussian CGS	SI
Units and conversions:		
Charge	$2.997 92 \times 10^9 \text{ esu}$	= 1 C = 1 A s
Potential	(1/299.792) statvolt = (1/299.792) erg/esu	$= 1 V = 1 J C^{-1}$
Magnetic field	10^4 gauss = 10^4 dyne/esu	$= 1 T = 1 N A^{-1} m^{-1}$
Electron charge	$e = 4.803 \ 204 \times 10^{-10} \ \text{esu}$	$= 1.602 \ 176 \times 10^{-19} \ \mathrm{C}$
Lorentz force	$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right)$	$\mathbf{F} = q \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right)$
Maxwell equations	$\nabla \cdot \mathbf{D} = 4\pi\rho$	$\nabla \cdot \mathbf{D} = \rho$
	$\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0$	$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$
	$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$
	$\nabla \times \mathbf{H} - \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} = \frac{4\pi}{c} \mathbf{J}$	$\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{J}$
Linear media	$\mathbf{D} = \mathbf{\epsilon}\mathbf{E}, \ \mathbf{B} = \mathbf{\mu}\mathbf{H}$	$\mathbf{D} = \epsilon \mathbf{E}, \ \mathbf{B} = \mu \mathbf{H}$
Permittivity of free space	$\varepsilon_{\rm vac} = 1$	$\varepsilon_{vac} = \varepsilon_0$
Permeability of free space	$\mu_{vac} = 1$	$\mu_{vac} = \mu_0$
Fields from potentials	$\mathbf{E} = -\nabla V - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$	$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$
	$\mathbf{B} = \nabla \times \mathbf{A}$	$\mathbf{B} = \nabla \times \mathbf{A}$
Static potentials (coulomb gauge)	$V = \sum_{\text{charges}} \frac{q_i}{r_i}$	$V = \frac{1}{4\pi\varepsilon_0} \sum_{\text{charges}} \frac{q_i}{r_i}$
	$\mathbf{A} = \frac{1}{c} \oint \frac{I \mathbf{d} \dots}{ \mathbf{r} - \mathbf{r}' }$	$\mathbf{A} = \frac{\mu_0}{4\pi} \oint \frac{I \mathbf{d}}{ \mathbf{r} - \mathbf{r'} }$
Relativistic	$\mathbf{E}_{\parallel}' = \mathbf{E}_{\parallel}$	$\mathbf{E}_{\parallel}' = \mathbf{E}_{\parallel}$
transformations (v is the velocity	$\mathbf{E}_{\perp}' = \gamma \left(\mathbf{E}_{\perp} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right)$	$\mathbf{E}_{\perp}' = \gamma \left(\mathbf{E}_{\perp} + \mathbf{v} \times \mathbf{B} \right)$
of primed system as seen in up-	$\mathbf{B}'_{\parallel} = \mathbf{B}_{\parallel}$	$\mathbf{B}'_{ } = \mathbf{B}_{ }$
primed system)	$\mathbf{B}_{\perp}' = \gamma \left(\mathbf{B}_{\perp} - \frac{1}{c} \mathbf{v} \times \mathbf{E} \right)$	$\mathbf{B}_{\perp}' = \gamma \left(\mathbf{B}_{\perp} - \frac{1}{c^2} \mathbf{v} \times \mathbf{E} \right)$
$4\pi\varepsilon_0 = \frac{1}{c^2} \ 10$	$h^7 \mathrm{A}^2 \mathrm{N}^{-1} = \frac{1}{8.987 55 \dots} \times 10^{-1}$	⁻⁹ F m ⁻¹
$\frac{\mu_0}{4\pi} = 10^{-72}$	N A ⁻¹ ; $c = 2.99792458 \times 1$	$0^8 \mathrm{m} \mathrm{s}^{-1}$

Impedances (SI units)

r = resistivity at room temperature in 10⁻⁸ Ω m:

~ 1.7 for Cu	~ 5.5 for W
~ 2.4 for Au	~ 73 for SS 304
~ 2.8 for Al	~ 100 for Nichrome
(Al alloys may have	
double this value.)	

For alternating currents, instantaneous current I, voltage V, angular frequency w:

$$V = V_0 e^{j\omega t} = ZI .$$

Impedance of self-inductance L: Z = j wL.

Impedance of capacitance C: Z = 1/j wC.

Impedance of free space: $Z = \sqrt{\mu_0 / \epsilon_0} = 376.7 \Omega$.

High-frequency surface impedance of a good conductor:

$$Z = \frac{(1+j)\rho}{\delta} \text{, where } \boldsymbol{d} = \text{effective skin depth};$$
$$\delta = \sqrt{\frac{\rho}{\pi \nu \mu}} \approx \frac{6.6 \text{ cm}}{\sqrt{\nu[\text{Hz}]}} \text{ for Cu.}$$

Capacitance \hat{C} and inductance \hat{L} per unit length (SI units)

Flat rectangular plates of width w, separated by $d \ll w$ with linear medium (e, m) between:

$$\hat{C} = \varepsilon \frac{w}{d}; \quad \hat{L} = \mu \frac{d}{w};$$

 $\frac{\epsilon}{\epsilon_0} = 2$ to 6 for plastics; 4 to 8 for porcelain, glasses;

$$\frac{\mu}{\mu_0} \cong 1 \quad .$$

Coaxial cable of inner radius r_1 , outer radius r_2 :

$$\hat{C} = \frac{2\pi\epsilon}{\ln(r_2/r_1)}$$
; $\hat{L} = \frac{\mu}{2\pi}\ln(r_2/r_1)$.

Transmission lines (no loss):

Impedance: $Z = \sqrt{\hat{L}/\hat{C}}$. Velocity: $v = 1/\sqrt{\hat{L}\hat{C}} = 1/\sqrt{\mu\epsilon}$.

Motion of charged particles in a uniform, static magnetic field

The path of motion of a charged particle of momentum p is a helix of constant radius R and constant pitch angle I, with the axis of the helix along **B**:

 $p[\text{GeV}/c]\cos\lambda = 0.29979 \ qB[\text{tesla}] \ R[\text{m}]$,

where the charge q is in units of the electronic charge. The angular velocity about the axis of the helix is

 ω [rad s⁻¹] = 8.98755 × 10⁷ *qB*[tesla]/*E*[GeV],

where E is the energy of the particle.

This section was adapted, with permission, from the 1999 web edition of the *Review of Particle Physics* (<u>http://pdg. lbl.gov/</u>). See J. D. Jackson, *Classical Electrodynamics*, 2d ed. (John Wiley & Sons, New York, 1975) for more formulas and details.